Some “Do’s and “Don't’s of

Benchmarking

Paul Shaw, Program Manager, CP product development, IBM.,
paul.shaw@fr.ibm.com

WebSphere |- EL (¢

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Optimization at IBM
* IBM Research has a tradition of optimization
— Probably most recently for COIN-OR
= ILOG was fully transferred to IBM just under one year ago
— Brought new optimization products to IBM

— Since 4" of June, IBM sells “CPLEX Optimization Studio”

* Comprises CPLEX, CP Optimizer, OPL
— As well as ILOG CP (the older CP products Solver, Scheduler, Dispatcher)

= Academic Initiative

— Full CPLEX Optimization Studio will be free for academics

°* https://www.ibm.com/developerworks/university/academicinitiative

°* https://www.ibm.com/developerworks/university/support/fags.html

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

CP Optimizer

= CP Optimizer is a constraint programming engine concentrating on
— Combinatorial optimization problems

— Scheduling problems

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

CP Optimizer

= CP Optimizer is a constraint programming engine concentrating on
— Combinatorial optimization problems

— Scheduling problems

" CP Optimizer has a robust built-in search engine (sometimes referred
to as autonomous search)

— Although the search can be fully programmed if desired

— Concise hints on search can also be given

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

CP Optimizer

= CP Optimizer is a constraint programming engine concentrating on
— Combinatorial optimization problems

— Scheduling problems

" CP Optimizer has a robust built-in search engine (sometimes referred
to as autonomous search)

— Although the search can be fully programmed if desired

— Concise hints on search can also be given

* Our team concentrates on:
— Making CP Optimizer solve more quickly
— Making CP Optimizer easier to use

— Adding new modelling or solving features

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

About this talk, or, “sorry for stealing the idea”

" Fifteen years ago
— | worked in a research group called APES

* Algorithms, Problems, Empirical Studies

— We studied algorithms and did a lot of experiments (or if you like,
benchmarking)

— One report we wrote was called “How Not To Do It”

* Informally chronicled some misadventures in the world of
experiments on NP-hard problems

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

About this talk, or, “sorry for stealing the idea”

" Fifteen years ago
— | worked in a research group called APES

* Algorithms, Problems, Empirical Studies

— We studied algorithms and did a lot of experiments (or if you like,
benchmarking)

— One report we wrote was called “How Not To Do It”

* Informally chronicled some misadventures in the world of
experiments on NP-hard problems

* Today

— | tried (without peeking at the report) to remember some of the
themes and to see how they applied to me now

— A couple of themes are new

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Scenario

" You are are PhD student working on a research area proposed to you by your
thesis advisor. You've thought of a cool new algorithm for a well-known
problem class. Eager to see how it performs, you code it up and run a load of
experiments on classic benchmarks over the weekend.

" You check on the results on Monday morning. Tremendous! You close several
open problems by proving the optimality of some known upper bounds.

" Do you:

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Scenario

" You are are PhD student working on a research area proposed to you by your
thesis advisor. You've thought of a cool new algorithm for a well-known
problem class. Eager to see how it performs, you code it up and run a load of
experiments on classic benchmarks over the weekend.

" You check on the results on Monday morning. Tremendous! You close several
open problems by proving the optimality of some known upper bounds.

" Do you:

— A) Call your thesis advisor to thank them for being so insightful in proposing
the area. He or she surely deserves at least half the credit.

© 2010 IBM Corporation

. IBM Software Group | WebSphere software

Scenario

" You are are PhD student working on a research area proposed to you by your
thesis advisor. You've thought of a cool new algorithm for a well-known
problem class. Eager to see how it performs, you code it up and run a load of
experiments on classic benchmarks over the weekend.

" You check on the results on Monday morning. Tremendous! You close several
open problems by proving the optimality of some known upper bounds.

" Do you:

— A) Call your thesis advisor to thank them for being so insightful in proposing
the area. He or she surely deserves at least half the credit.

— B) Allow yourself a little smile — you always knew your idea was brilliant.

© 2010 IBM Corporation

. IBM Software Group | WebSphere software

Scenario

" You are are PhD student working on a research area proposed to you by your
thesis advisor. You've thought of a cool new algorithm for a well-known
problem class. Eager to see how it performs, you code it up and run a load of
experiments on classic benchmarks over the weekend.

" You check on the results on Monday morning. Tremendous! You close several
open problems by proving the optimality of some known upper bounds.

" Do you:

— A) Call your thesis advisor to thank them for being so insightful in proposing
the area. He or she surely deserves at least half the credit.

— B) Allow yourself a little smile — you always knew your idea was brilliant.

— C) Call up your friends to go out and celebrate — the thesis is in the bag.

© 2010 IBM Corporation

. IBM Software Group | WebSphere software

Scenario

" You are are PhD student working on a research area proposed to you by your
thesis advisor. You've thought of a cool new algorithm for a well-known
problem class. Eager to see how it performs, you code it up and run a load of
experiments on classic benchmarks over the weekend.

" You check on the results on Monday morning. Tremendous! You close several
open problems by proving the optimality of some known upper bounds.

" Do you:

— A) Call your thesis advisor to thank them for being so insightful in proposing
the area. He or she surely deserves at least half the credit.

— B) Allow yourself a little smile — you always knew your idea was brilliant.
— C) Call up your friends to go out and celebrate — the thesis is in the bag.

— D) Start scanning your code for bugs.

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T TRUST YOURSELF

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T TRUST YOURSELF
= DO have healthy skepticism

— DON'T believe that someone else will volunteer to find errors in your work

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T TRUST YOURSELF
= DO have healthy skepticism

— DON'T believe that someone else will volunteer to find errors in your work

= DO check everything twice, then check it again (including the problem spec.)

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T TRUST YOURSELF
= DO have healthy skepticism

— DON'T believe that someone else will volunteer to find errors in your work
= DO check everything twice, then check it again (including the problem spec.)

= DON'T do it alone
— DO get help in your group to check your logic, code and algorithm

— DO use tools to detect errors, but DO write simple code

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T TRUST YOURSELF
= DO have healthy skepticism

— DON'T believe that someone else will volunteer to find errors in your work
= DO check everything twice, then check it again (including the problem spec.)
= DON'T do it alone

— DO get help in your group to check your logic, code and algorithm

— DO use tools to detect errors, but DO write simple code

= DO write a solution checker where appropriate (or better, use someone else's)

— DO resist the temptation to use the same data and solution reader

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T TRUST YOURSELF

DO have healthy skepticism

— DON'T believe that someone else will volunteer to find errors in your work
DO check everything twice, then check it again (including the problem spec.)

DON'T do it alone
— DO get help in your group to check your logic, code and algorithm

— DO use tools to detect errors, but DO write simple code

DO write a solution checker where appropriate (or better, use someone else's)

— DO resist the temptation to use the same data and solution reader
DO write a second implementation

DO construct a proof

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T TRUST YOURSELF: A study

= Solve the optimization version of the MAX-CUT problem on a cubic graph

— Best known specialized algorithm has complexity O*(2m/6)

" We wanted to try CP Optimizer to see how it compared empirically

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T TRUST YOURSELF: A study

= Solve the optimization version of the MAX-CUT problem on a cubic graph

— Best known specialized algorithm has complexity O*(2m/6)

" We wanted to try CP Optimizer to see how it compared empirically
" Results:

— Obvious model was terrible

m/2
* from memory, growth was around 2

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T TRUST YOURSELF: A study

Solve the optimization version of the MAX-CUT problem on a cubic graph

— Best known specialized algorithm has complexity O*(2m/6)

We wanted to try CP Optimizer to see how it compared empirically

Results:
— Obvious model was terrible

m/2
* from memory, growth was around 2

— Second model included a dominance rule to cut non-optimal solutions

/5
* better: growth around o

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T TRUST YOURSELF: A study

= Solve the optimization version of the MAX-CUT problem on a cubic graph

— Best known specialized algorithm has complexity O*(2m/6)

" We wanted to try CP Optimizer to see how it compared empirically

" Results:

— Obvious model was terrible

m/2
* from memory, growth was around 2

— Second model included a dominance rule to cut non-optimal solutions

/5
* better: growth around o

— Third model included a more sophisticated dominance rule

* much faster: growth was around m®

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T TRUST YOURSELF: A study

= Solve the optimization version of the MAX-CUT problem on a cubic graph

— Best known specialized algorithm has complexity O*(2m/6)

" We wanted to try CP Optimizer to see how it compared empirically

" Results:

— Obvious model was terrible

m/2
* from memory, growth was around 2

— Second model included a dominance rule to cut non-optimal solutions

/5
* better: growth around o

— Third model included a more sophisticated dominance rule

* much faster: growth was around m®

= So, | started looking for bugs in the model

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T TRUST YOURSELF: How we debugged that one

" Three facts

— | suspected the third model was pruning too many branches
— | had two other simpler models

— | had a method for generating a nearly unlimited number of problems

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T TRUST YOURSELF: How we debugged that one

" Three facts

— | suspected the third model was pruning too many branches
— | had two other simpler models

— | had a method for generating a nearly unlimited number of problems

= Generate large numbers of small problems until the more sophisticated
algorithm produces a different answer from the simple one

— Keep the problems as small as possible as some detailed analysis is needed
afterwards

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T TRUST YOURSELF: How we debugged that one

" Three facts

— | suspected the third model was pruning too many branches
— | had two other simpler models

— | had a method for generating a nearly unlimited number of problems

= Generate large numbers of small problems until the more sophisticated
algorithm produces a different answer from the simple one

— Keep the problems as small as possible as some detailed analysis is needed
afterwards

= DO have a more trusted implementation

— Use it as a sanity check

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T TRUST YOURSELF: How we debugged that one

" Three facts

— | suspected the third model was pruning too many branches
— | had two other simpler models

— | had a method for generating a nearly unlimited number of problems

= Generate large numbers of small problems until the more sophisticated
algorithm produces a different answer from the simple one

— Keep the problems as small as possible as some detailed analysis is needed
afterwards

= DO have a more trusted implementation
— Use it as a sanity check

= DO look for counter examples (automatically, or by hand)

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T TRUST YOURSELF: How we debugged that one

" Three facts

— | suspected the third model was pruning too many branches
— | had two other simpler models

— | had a method for generating a nearly unlimited number of problems

Generate large numbers of small problems until the more sophisticated
algorithm produces a different answer from the simple one

— Keep the problems as small as possible as some detailed analysis is needed
afterwards

DO have a more trusted implementation

— Use it as a sanity check

DO look for counter examples (automatically, or by hand)

DO test as widely as possible

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Progressive Party Problem

= Organize a party in a marina on a number of host boats
— Each boat has a capacity (people) and a crew of a certain size
— The party is organized into six (or more periods)

— Host crews stay on their host boat — each guest crew visits a new host
boat at each period

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Progressive Party Problem

= Organize a party in a marina on a number of host boats
— Each boat has a capacity (people) and a crew of a certain size
— The party is organized into six (or more periods)

— Host crews stay on their host boat — each guest crew visits a new host
boat at each period

= Constraints

— The total size of host and guest crews on a boat is less than boat
capacity

— Each guest crew must visit a different boat in each period

— No two guest crews can meet more than once

© 2010 IBM Corporation

. IBM Software Group | WebSphere software

Progressive Party Problem

= Organize a party in a marina on a number of host boats
— Each boat has a capacity (people) and a crew of a certain size
— The party is organized into six (or more periods)

— Host crews stay on their host boat — each guest crew visits a new host
boat at each period

= Constraints

— The total size of host and guest crews on a boat is less than boat
capacity

— Each guest crew must visit a different boat in each period

— No two guest crews can meet more than once

* Objective: minimize the number of host boats

— Decide on the host boats and a visit schedule for the guest crews

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Progressive Party Problem
* The progressive part problems can be considered to have two aspects:
— (a) Decide on the set of host boats

— (b) Given the host boats, decide on a schedule for the guest crews

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Progressive Party Problem
* The progressive part problems can be considered to have two aspects:
— (a) Decide on the set of host boats

— (b) Given the host boats, decide on a schedule for the guest crews

" To simplify the problem, solution techniques typically divide the two
problems, with normally (a) being solved by hand (e.g. using the biggest
boats)

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Progressive Party Problem
* The progressive part problems can be considered to have two aspects:
— (a) Decide on the set of host boats

— (b) Given the host boats, decide on a schedule for the guest crews

" To simplify the problem, solution techniques typically divide the two
problems, with normally (a) being solved by hand (e.g. using the biggest
boats)

" | was pretty ignorant of the literature and just coded up the whole model
and used CP Optimizer's search

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Progressive Party Problem

Minimization problem - 1408 variables, 15805 constraints
Preprocessing : 42 extractables eliminated, 42 constraints generated
LogPeriod = 10000
Initial process time : 0.10s (0.08s extraction + 0.02s propagation)
Log search space : 4408.7 (before), 4235.2 (after)
. Memory usage : 4.9 Mb (before), 7.2 Mb (after)
. Variables fixed : 42

! Branches Non-fixed Branch decision Best
10000 37 M13,30 = 3
* 12605 1.57s M0,20 = 3 21
* 18049 2.36s M0,20 = 0 20
20000 321 H13 = 0 20
* 20767 2.72s M21,27 = 1 19
* 21494 2.80s M21,27 = 1 18
* 22756 2.99s M13,41 = 0 17
* 27350 3.47s M23,38 = 1 16
30000 385 TO,31 = 7 16
* 34262 4.56s M21,27 = 1 15
40000 411 T3,30 = 32 F 15
50000 399 M16,38 = 5 15
* 50492 7.43s MO,15 = 1 14
60000 409 M1,8 I= 1 14
70000 462 M11,36 = 5 14
* 75638 11.54s MO,15 = 1 13

! Search terminated, replaying optimal solution

Search speed (br. / s) : 6594.4

! Solution status : Terminated normally, optimal found (tol. = 0)

! Number of branches : 75638

! Number of fails : 17715

! Total memory usage : 11.9 Mb (10.3 Mb CP Optimizer + 1.6 Mb Concert)
! Time spent in solve : 11.55s (11.47s engine + 0.08s extraction)

!

!

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Progressive Party Problem: identify decision variables

* ¥ X =

Minimization problem - 1408 variables, 15805 constraintd
Preprocessing : 42 extractables eliminated, 42 constraints
LogPeriod = 10000
Initial process time : 0.13s (0.1lls extraction + 0.02s propagation)
Log search space : 4408.7 (before), 4235.2 (after)
. Memory usage : 4.9 Mb (before), 7.2 Mb (after)
. Variables fixed : 42

Branches Non-fixed Branch decision Best
2887 0.48s M4,19 = 5 20
4578 0.66s M6,7 = 1 16
6625 0.91s M22,23 = 0 14

10000 714 T3,28 = 13 F 14
11592 1.53s M6,13 = 2 13

Search terminated, replaying optimal solution

Solution status : Terminated normally, optimal found (tol. = 0)
Number of branches : 11592

Number of fails : 3227

Total memory usage : 11.1 Mb (9.5 Mb CP Optimizer + 1.6 Mb Concert)
Time spent in solve : 1.54s (1.43s engine + 0.1lls extraction)

Search speed (br. / s) : 8106.3

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T FORGET TO TRY THE OBVIOUS

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T FORGET TO TRY THE OBVIOUS

" It doesn't take long

— S0, even if it works poorly, you did not waste too much time

— Gives you a simple “trusted” implementation that you can test against

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T FORGET TO TRY THE OBVIOUS

" It doesn't take long
— S0, even if it works poorly, you did not waste too much time

— Gives you a simple “trusted” implementation that you can test against
= It might work well. If the obvious approach has not worked for others:
— The reasons it did not work might not exist today

— For the PPP, CP Optimizer is using

* A global packing constraint
* A search process which uses restarts and learning

— Which were not available / used in original studies

© 2010 IBM Corporation

. IBM Software Group | WebSphere software

DON'T FORGET TO TRY THE OBVIOUS

" It doesn't take long
— S0, even if it works poorly, you did not waste too much time

— Gives you a simple “trusted” implementation that you can test against

= It might work well. If the obvious approach has not worked for others:
— The reasons it did not work might not exist today

— For the PPP, CP Optimizer is using

* A global packing constraint
* A search process which uses restarts and learning

— Which were not available / used in original studies

" In any case, if the obvious approach is a success
— DON'T TRUST YOURSELF — check your work!

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Magic Squares

/7 118 | 25 | 4 |11
S 8 |19 | 12 | 21
16 | 24 | 13 | 9 3
22 | 14 | 2 |17 | 10
15 | 1 6 | 23 | 20

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Magic Squares

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Magic Squares

LT Td

) Zf 1|9 1|2 41
1|6 44 1B | ¢ 3
42 1|4 12 17 | 10
SEARSENE:
voOvY v vy
65 65 65 65 65

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Magic Squares

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Diagonally Ordered Magic Squares

16 | 24 | 13 | 9 3

22 | 14 | 2 | 17 | 10

15 | 1 6 | 23 | 20

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Diagonally Ordered Magic Squares

16 | 24 | 13 | 9 3

22 | 14 | 2 |17 | 10

15 | 1 6 | 23 | 20

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Diagonally Ordered Magic Squares

= “Streamlined Constraint Reasoning”

— Gomes and Sellmann, CP 2004

— Uses restarts and “streamlining” (search space restriction)
= “Disco Novo Gogo”

— Sellmann and Ansotegui, AAAI 2006

— Uses restarts, randomized variable ordering and learning on the
value selection heuristic

* | wanted to see how CP Optimizer's search compared

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Diagonally O

rdered Magic Squares

1886888 r T
G R R =
1 e CRRERTTEEEEREPRPRRERS -
3 AR A . S . S— |
-~ ! ' ' ' '
"
g
w
T 1 i i i 4
o ; ; : : :
e i e e S S e SR S :
P RCTRR, CRPES N E—— USRI, G—_— U S ——— Y
B [oeeeense e e S e P L UL e RES CELETPLLERPIPEEREET -
Restarts —— I-
H.El | | | |
G 8 18 12

16 18

| IBM Software Group | WebSphere software

Diagonally Ordered Magic Squares

1680808 T . .
G R R =
i 111 B CRPRCPETEPECREERRERRE FEERE LR T RR LR LR PEEe LoP e R TE T ER PP LT TP EOP LR TR PR LR PETE CEPOPELE T PR ERPETPEL CRECPETRETRREERPERPED e
LT SRR .= [N (R . A AN N ——— :
= ! ' X . X
[
g
u
T 1 i i i 4
o ; ; : : :
e T e S]
1 R e i a Tab e e et -
e I e T . e e s -
IRestarts ==
Dizco Hovo GoGo ——
H.El 1 1 1 1 T
[i 18 12 14 16 18

| IBM Software Group | WebSphere software

18686888

Diagonally Ordered Magic Squares

T T
TBBEE |- - n o e e R .
i 117 B CRPECPETRPECREERRERRE FEERE LR TRR LR LR PEEs LoP LR TE T ER PR EL TP EOP LR T RS PR ERPETE CEPEOREERETERTETP (ALL CRECPETRETRRTERPERPED e
108 o nsrrree e R R e U e R R
. : : !
e
g
1]
L ! ; ;
o ; ; : :
s B et e e B e e e e
R R e :
Bd foeeeeeeee et e S e L UL e RRES CECPTPLLERPIPEER T -
Restarts —+— 1
Dizco Hovo GoGo —»— ||
: CP Optinizer —#%—
H.El | | | | |
6 8 18 12 14 16 18

| IBM Software Group | WebSphere software

Streamlining: Dumbledore Squares

= Each row and column usually has an even spread of numbers

/7 118 | 25| 4 |11
5 8 | 19 | 12 | 21
16 | 24 | 13 | 9 3
22 | 14 | 2 | 17 | 10
15 | 1 6 | 23 | 20

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Streamlining: Dumbledore Squares

* Force each row and column to have a number from each “class

7 118 | 25 | 4 |11
5 | 8 | 19 | 12 | 21
16 | 24 |13 | 9 | 3
22 | 14| 2 | 17 | 10
15| 1 | 6 |23 |20

(A) 1-5 (B) 6-10

B| D |E C
A|B|D E
D |E |C A
E | C | A B
C | A|B D
(C) 11-15 (D) 16-20 (E) 21-25

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Streamlining: Dumbledore Squares

1600880 |

18888

1008 |

168 [

Tine (=)

1@ |

Etreamlining ——+——|-

16 18

| IBM Software Group | WebSphere software

Streamlining: Dumbledore Squares

1600880 | .

BB e L S S B e

AU VORI SVINUTUIN ORI - SOOI ... AT,

T SR A —— ITR———— AL TR TN F—

- =]

v]]
~ : : : ; : :
w : : : : :

£ - : : : :]
P ; ; ; : :

1B i i . ' """"""""""" b e e e P e S b e P e e S S i __

i : : ' : : ;]

e e S e o e R e e o e e R S e S e e s e B s R S R s R s 2 e A

2 T I e R e S]

: CF Optimizer —»—
B.Bl | | | | |

Str‘elanl.i.n.i.ng e e

6 8 18 12 14 16

18

| IBM Software Group | WebSphere software

Streamlining: Dumbledore Squares

1868888 r T

10880 - R e e e s
1808 |

168 [

| 5 5 T 5 5 !
T EEVRVNPRUIN SA—— oot s s VRV, S — .

Tine (=)

Streanlining —— 1

CPF Optinmizer —— ||

Dizco Movo GoGo —#—
I

6 8 18 12 14 16 18

| IBM Software Group | WebSphere software

DO FAVOUR GRAPHS OVER TABLES

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DO FAVOUR GRAPHS OVER TABLES

= DO produce scaling results when you can

— These give excellent information about how different methods compare

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DO FAVOUR GRAPHS OVER TABLES

= DO produce scaling results when you can
— These give excellent information about how different methods compare
= DO use scatter plots

— When results cannot easily be aggregated

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DO FAVOUR GRAPHS OVER TABLES

= DO produce scaling results when you can

— These give excellent information about how different methods compare

= DO use scatter plots
— When results cannot easily be aggregated
= DO convert tables you find in the literature to graphs

— DON'T use tables just because previous papers did!

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Large neighborhood search

" Hybrid of local and constructive search which looks like local search
from a high level, but uses constructive search to make moves

— Each move removes part of the current solution

— Rebuilds it using a constructive method (usually limited in backtracks)

© 2010 IBM Corporation

. IBM Software Group | WebSphere software

Large neighborhood search

* Hybrid of local and constructive search which looks like local search
from a high level, but uses constructive search to make moves

— Each move removes part of the current solution

— Rebuilds it using a constructive method (usually limited in backtracks)

* | applied LNS to routing problems, and tested on the well-known
“Solomon” instances of capacitated vehicle routing problems with time
windows

— This benchmark suite of 56 problems has been used in hundreds of
papers on vehicle routing.

— My LNS method removed some customers from routes, then re-
inserted them using a backtracking technique and ordering heuristics

© 2010 IBM Corporation

\ IBM Software Group | WebSphere software

Large neighborhood search

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Large neighborhood search

© 2010 IBM Corporation

\ IBM Software Group | WebSphere software

Large neighborhood search

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Large neighborhood search

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Solomon problem instances (100 customers)

= Objective is to
— As a primary objective, minimize the number of vehicles used
— As a secondary objective, minimize the distance travelled

—0obj = M * vehicles + distance

5-10 customers 25-50 customers
per route per route

e Rt R2
Gwe Gl C2
s RCT RC2

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Typical situation on long-route problems (series 2)

" For the most part, LNS will reduce the distance and not the vehicles

— To reduce the number of vehicles, LNS must remove and successfully
reinsert all customers on a single vehicle

— When average customers on a route >=12, this gets difficult

Bad for reducing vehicles
O—0—>30>0>»0*0>0—>0>»0>0>0—0

O—O0—O>O>»O0 O >O0—)>0—>0—>0—0

O—»O—O0>0O>»0 " O>O0—O>0O0—>0—>0—0

Good for reducing vehicles
O—0—0>0+0+0>0—0+0>0>0+0>0—0—0

O—0—>0>0>»0*0>0—>0>0>0>0—>0>0—0—0

O0—0—0>0>»0*0>0—>0>0>0>0>0>0—0—0

| IBM Software Group | WebSphere software

Solomon problem instances (100 customers)

= Objective is to
— As a primary objective, minimize the number of vehicles used
— As a secondary objective, minimize the distance travelled

—0obj = M * vehicles + distance

5-10 customers 25-50 customers
per route per route

e Rt R2
Gwe Gl C2
s RCT RC2

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Solomon problem instances (100 customers)

= Objective is to
— As a primary objective, minimize the number of vehicles used
— As a secondary objective, minimize the distance travelled

—0obj = M * vehicles + distance

5-10 customers 25-50 customers

per route per rout
Random
positions R 1
Clustered C 1

positions

Mixed
Positions RC 1

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T be a slave to benchmark suites

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T be a slave to benchmark suites

= DON'T feel that your algorithm has to be good everywhere

— But DO know how it performs in as many places as possible

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T be a slave to benchmark suites

= DON'T feel that your algorithm has to be good everywhere

— But DO know how it performs in as many places as possible

= DO report your failures

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DON'T be a slave to benchmark suites

= DON'T feel that your algorithm has to be good everywhere

— But DO know how it performs in as many places as possible
= DO report your failures
* If you need to, DO create new benchmark instances,

— But DO be credible

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Heuristics

* Variable and value ordering heuristics are ubiquitous
= Typical implementation of first fail:

best = -1;
bestSize = infinity;
for i in 1l..n
if (not fixed(x[i]) and domain-size(x[1i]) < bestSize)

best = 1
bestSize = domain-size(x[1])
end if
end for

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Heuristics

* Variable and value ordering heuristics are ubiquitous
= Typical implementation of first fail:

best = -1;
bestSize = infinity;
for i in 1l..n
if (not fixed(x[i]) and domain-size(x[1i]) < bestSize)

best = 1
bestSize = domain-size(x[1])
end if
end for

— This code contains an implicit tie-breaking rule:
* Lower indexed variables are chosen over higher indexed ones

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Heuristics: Magic squares

180008 |

SRR s e e sy e :

1600 |

Tine

160 |

18 t

Hin-donain / first variable tie break —— |

6 8 18 12 14 16

Size

| IBM Software Group | WebSphere software

Heuristics: Magic squares

186008 |

106808 -

1600 |

Tine

188 |

18 |

Hin-duﬁain £ first uariahie tie break —— |]
Hin-donain / randon tie-break —+—
I

I I I
6 8 18 12 14 16
Size

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DO think about tie breaking

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DO think about tie breaking

= DON'T tie break on arbitrary data, like an index

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

DO think about tie breaking

= DON'T tie break on arbitrary data, like an index

= DON'T wrongly attribute performance to the major selection rule

— Test the minor selection rules as well

© 2010 IBM Corporation

| IBM Software Group | WebSphere software

Summary
= DON'T trust yourself

— If it looks too good to be true, then it probably is

DON'T forget to try the obvious
— Your “obvious” might not be the same as others'

— The obvious might work now, when it didn't before

DO use graphs over tables

— Will make you ask much more interesting questions

DON'T be a slave to benchmark suites

— Be honest, report your failures

DO think about tie-breaking

— Can have a massive impact on benchmark results

© 2010 IBM Corporation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81

