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Optimization at IBM
* IBM Research has a tradition of optimization
— Probably most recently for COIN-OR
= ILOG was fully transferred to IBM just under one year ago
— Brought new optimization products to IBM

— Since 4" of June, IBM sells “CPLEX Optimization Studio”

* Comprises CPLEX, CP Optimizer, OPL
— As well as ILOG CP (the older CP products Solver, Scheduler, Dispatcher)

= Academic Initiative

— Full CPLEX Optimization Studio will be free for academics

°* https://www.ibm.com/developerworks/university/academicinitiative

°* https://www.ibm.com/developerworks/university/support/fags.html
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CP Optimizer

= CP Optimizer is a constraint programming engine concentrating on
— Combinatorial optimization problems

— Scheduling problems
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= CP Optimizer is a constraint programming engine concentrating on
— Combinatorial optimization problems

— Scheduling problems

" CP Optimizer has a robust built-in search engine (sometimes referred
to as autonomous search)

— Although the search can be fully programmed if desired

— Concise hints on search can also be given
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CP Optimizer

= CP Optimizer is a constraint programming engine concentrating on
— Combinatorial optimization problems

— Scheduling problems

" CP Optimizer has a robust built-in search engine (sometimes referred
to as autonomous search)

— Although the search can be fully programmed if desired

— Concise hints on search can also be given

* Our team concentrates on:
— Making CP Optimizer solve more quickly
— Making CP Optimizer easier to use

— Adding new modelling or solving features
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About this talk, or, “sorry for stealing the idea”

" Fifteen years ago
— | worked in a research group called APES

* Algorithms, Problems, Empirical Studies

— We studied algorithms and did a lot of experiments (or if you like,
benchmarking)

— One report we wrote was called “How Not To Do It”

* Informally chronicled some misadventures in the world of
experiments on NP-hard problems
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About this talk, or, “sorry for stealing the idea”

" Fifteen years ago
— | worked in a research group called APES

* Algorithms, Problems, Empirical Studies

— We studied algorithms and did a lot of experiments (or if you like,
benchmarking)

— One report we wrote was called “How Not To Do It”

* Informally chronicled some misadventures in the world of
experiments on NP-hard problems

* Today

— | tried (without peeking at the report) to remember some of the
themes and to see how they applied to me now

— A couple of themes are new
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Scenario

" You are are PhD student working on a research area proposed to you by your
thesis advisor. You've thought of a cool new algorithm for a well-known
problem class. Eager to see how it performs, you code it up and run a load of
experiments on classic benchmarks over the weekend.

" You check on the results on Monday morning. Tremendous! You close several
open problems by proving the optimality of some known upper bounds.

" Do you:
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thesis advisor. You've thought of a cool new algorithm for a well-known
problem class. Eager to see how it performs, you code it up and run a load of
experiments on classic benchmarks over the weekend.

" You check on the results on Monday morning. Tremendous! You close several
open problems by proving the optimality of some known upper bounds.

" Do you:

— A) Call your thesis advisor to thank them for being so insightful in proposing
the area. He or she surely deserves at least half the credit.
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Scenario

" You are are PhD student working on a research area proposed to you by your
thesis advisor. You've thought of a cool new algorithm for a well-known
problem class. Eager to see how it performs, you code it up and run a load of
experiments on classic benchmarks over the weekend.

" You check on the results on Monday morning. Tremendous! You close several
open problems by proving the optimality of some known upper bounds.

" Do you:

— A) Call your thesis advisor to thank them for being so insightful in proposing
the area. He or she surely deserves at least half the credit.

— B) Allow yourself a little smile — you always knew your idea was brilliant.
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Scenario

" You are are PhD student working on a research area proposed to you by your
thesis advisor. You've thought of a cool new algorithm for a well-known
problem class. Eager to see how it performs, you code it up and run a load of
experiments on classic benchmarks over the weekend.

" You check on the results on Monday morning. Tremendous! You close several
open problems by proving the optimality of some known upper bounds.

" Do you:

— A) Call your thesis advisor to thank them for being so insightful in proposing
the area. He or she surely deserves at least half the credit.

— B) Allow yourself a little smile — you always knew your idea was brilliant.

— C) Call up your friends to go out and celebrate — the thesis is in the bag.
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Scenario

" You are are PhD student working on a research area proposed to you by your
thesis advisor. You've thought of a cool new algorithm for a well-known
problem class. Eager to see how it performs, you code it up and run a load of
experiments on classic benchmarks over the weekend.

" You check on the results on Monday morning. Tremendous! You close several
open problems by proving the optimality of some known upper bounds.

" Do you:

— A) Call your thesis advisor to thank them for being so insightful in proposing
the area. He or she surely deserves at least half the credit.

— B) Allow yourself a little smile — you always knew your idea was brilliant.
— C) Call up your friends to go out and celebrate — the thesis is in the bag.

— D) Start scanning your code for bugs.
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DON'T TRUST YOURSELF
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DON'T TRUST YOURSELF
= DO have healthy skepticism

— DON'T believe that someone else will volunteer to find errors in your work
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= DO have healthy skepticism

— DON'T believe that someone else will volunteer to find errors in your work

= DO check everything twice, then check it again (including the problem spec.)
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DON'T TRUST YOURSELF
= DO have healthy skepticism

— DON'T believe that someone else will volunteer to find errors in your work
= DO check everything twice, then check it again (including the problem spec.)

= DON'T do it alone
— DO get help in your group to check your logic, code and algorithm

— DO use tools to detect errors, but DO write simple code
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DON'T TRUST YOURSELF
= DO have healthy skepticism

— DON'T believe that someone else will volunteer to find errors in your work
= DO check everything twice, then check it again (including the problem spec.)
= DON'T do it alone

— DO get help in your group to check your logic, code and algorithm

— DO use tools to detect errors, but DO write simple code

= DO write a solution checker where appropriate (or better, use someone else's)

— DO resist the temptation to use the same data and solution reader
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DON'T TRUST YOURSELF

DO have healthy skepticism

— DON'T believe that someone else will volunteer to find errors in your work
DO check everything twice, then check it again (including the problem spec.)

DON'T do it alone
— DO get help in your group to check your logic, code and algorithm

— DO use tools to detect errors, but DO write simple code

DO write a solution checker where appropriate (or better, use someone else's)

— DO resist the temptation to use the same data and solution reader
DO write a second implementation

DO construct a proof
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DON'T TRUST YOURSELF: A study

= Solve the optimization version of the MAX-CUT problem on a cubic graph

— Best known specialized algorithm has complexity O*(2m/6)

" We wanted to try CP Optimizer to see how it compared empirically
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DON'T TRUST YOURSELF: A study

= Solve the optimization version of the MAX-CUT problem on a cubic graph

— Best known specialized algorithm has complexity O*(2m/6)

" We wanted to try CP Optimizer to see how it compared empirically
" Results:

— Obvious model was terrible

m/2
* from memory, growth was around 2
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DON'T TRUST YOURSELF: A study

= Solve the optimization version of the MAX-CUT problem on a cubic graph

— Best known specialized algorithm has complexity O*(2m/6)

" We wanted to try CP Optimizer to see how it compared empirically

" Results:

— Obvious model was terrible

m/2
* from memory, growth was around 2

— Second model included a dominance rule to cut non-optimal solutions

/5
* better: growth around o

— Third model included a more sophisticated dominance rule

* much faster: growth was around m®
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DON'T TRUST YOURSELF: A study

= Solve the optimization version of the MAX-CUT problem on a cubic graph

— Best known specialized algorithm has complexity O*(2m/6)

" We wanted to try CP Optimizer to see how it compared empirically

" Results:

— Obvious model was terrible

m/2
* from memory, growth was around 2

— Second model included a dominance rule to cut non-optimal solutions

/5
* better: growth around o

— Third model included a more sophisticated dominance rule

* much faster: growth was around m®

= So, | started looking for bugs in the model
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DON'T TRUST YOURSELF: How we debugged that one

" Three facts

— | suspected the third model was pruning too many branches
— | had two other simpler models

— | had a method for generating a nearly unlimited number of problems
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DON'T TRUST YOURSELF: How we debugged that one

" Three facts

— | suspected the third model was pruning too many branches
— | had two other simpler models

— | had a method for generating a nearly unlimited number of problems

= Generate large numbers of small problems until the more sophisticated
algorithm produces a different answer from the simple one

— Keep the problems as small as possible as some detailed analysis is needed
afterwards
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— | had a method for generating a nearly unlimited number of problems
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= DO have a more trusted implementation

— Use it as a sanity check
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DON'T TRUST YOURSELF: How we debugged that one

" Three facts

— | suspected the third model was pruning too many branches
— | had two other simpler models

— | had a method for generating a nearly unlimited number of problems

= Generate large numbers of small problems until the more sophisticated
algorithm produces a different answer from the simple one

— Keep the problems as small as possible as some detailed analysis is needed
afterwards

= DO have a more trusted implementation
— Use it as a sanity check

= DO look for counter examples (automatically, or by hand)
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DON'T TRUST YOURSELF: How we debugged that one

" Three facts

— | suspected the third model was pruning too many branches
— | had two other simpler models

— | had a method for generating a nearly unlimited number of problems

Generate large numbers of small problems until the more sophisticated
algorithm produces a different answer from the simple one

— Keep the problems as small as possible as some detailed analysis is needed
afterwards

DO have a more trusted implementation

— Use it as a sanity check

DO look for counter examples (automatically, or by hand)

DO test as widely as possible
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Progressive Party Problem

= Organize a party in a marina on a number of host boats
— Each boat has a capacity (people) and a crew of a certain size
— The party is organized into six (or more periods)

— Host crews stay on their host boat — each guest crew visits a new host
boat at each period
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Progressive Party Problem

= Organize a party in a marina on a number of host boats
— Each boat has a capacity (people) and a crew of a certain size
— The party is organized into six (or more periods)

— Host crews stay on their host boat — each guest crew visits a new host
boat at each period

= Constraints

— The total size of host and guest crews on a boat is less than boat
capacity

— Each guest crew must visit a different boat in each period

— No two guest crews can meet more than once
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Progressive Party Problem

= Organize a party in a marina on a number of host boats
— Each boat has a capacity (people) and a crew of a certain size
— The party is organized into six (or more periods)

— Host crews stay on their host boat — each guest crew visits a new host
boat at each period

= Constraints

— The total size of host and guest crews on a boat is less than boat
capacity

— Each guest crew must visit a different boat in each period

— No two guest crews can meet more than once

* Objective: minimize the number of host boats

— Decide on the host boats and a visit schedule for the guest crews
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Progressive Party Problem
* The progressive part problems can be considered to have two aspects:
— (a) Decide on the set of host boats

— (b) Given the host boats, decide on a schedule for the guest crews
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Progressive Party Problem
* The progressive part problems can be considered to have two aspects:
— (a) Decide on the set of host boats

— (b) Given the host boats, decide on a schedule for the guest crews

" To simplify the problem, solution techniques typically divide the two
problems, with normally (a) being solved by hand (e.g. using the biggest
boats)
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Progressive Party Problem
* The progressive part problems can be considered to have two aspects:
— (a) Decide on the set of host boats

— (b) Given the host boats, decide on a schedule for the guest crews

" To simplify the problem, solution techniques typically divide the two
problems, with normally (a) being solved by hand (e.g. using the biggest
boats)

" | was pretty ignorant of the literature and just coded up the whole model
and used CP Optimizer's search
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Progressive Party Problem

Minimization problem - 1408 variables, 15805 constraints
Preprocessing : 42 extractables eliminated, 42 constraints generated
LogPeriod = 10000
Initial process time : 0.10s (0.08s extraction + 0.02s propagation)
Log search space : 4408.7 (before), 4235.2 (after)
. Memory usage : 4.9 Mb (before), 7.2 Mb (after)
. Variables fixed : 42

! Branches Non-fixed Branch decision Best
10000 37 M13,30 = 3
* 12605 1.57s M0,20 = 3 21
* 18049 2.36s M0,20 = 0 20
20000 321 H13 = 0 20
* 20767 2.72s M21,27 = 1 19
* 21494 2.80s M21,27 = 1 18
* 22756 2.99s M13,41 = 0 17
* 27350 3.47s M23,38 = 1 16
30000 385 TO,31 = 7 16
* 34262 4.56s M21,27 = 1 15
40000 411 T3,30 = 32 F 15
50000 399 M16,38 = 5 15
* 50492 7.43s MO,15 = 1 14
60000 409 M1,8 I= 1 14
70000 462 M11,36 = 5 14
* 75638 11.54s MO,15 = 1 13

! Search terminated, replaying optimal solution

Search speed (br. / s) : 6594.4

! Solution status : Terminated normally, optimal found (tol. = 0)

! Number of branches : 75638

! Number of fails : 17715

! Total memory usage : 11.9 Mb (10.3 Mb CP Optimizer + 1.6 Mb Concert)
! Time spent in solve : 11.55s (11.47s engine + 0.08s extraction)

!

!
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Progressive Party Problem: identify decision variables

* ¥ X =

Minimization problem - 1408 variables, 15805 constraintd
Preprocessing : 42 extractables eliminated, 42 constraints
LogPeriod = 10000
Initial process time : 0.13s (0.1lls extraction + 0.02s propagation)
Log search space : 4408.7 (before), 4235.2 (after)
. Memory usage : 4.9 Mb (before), 7.2 Mb (after)
. Variables fixed : 42

Branches Non-fixed Branch decision Best
2887 0.48s M4,19 = 5 20
4578 0.66s M6,7 = 1 16
6625 0.91s M22,23 = 0 14

10000 714 T3,28 = 13 F 14
11592 1.53s M6,13 = 2 13

Search terminated, replaying optimal solution

Solution status : Terminated normally, optimal found (tol. = 0)
Number of branches : 11592

Number of fails : 3227

Total memory usage : 11.1 Mb (9.5 Mb CP Optimizer + 1.6 Mb Concert)
Time spent in solve : 1.54s (1.43s engine + 0.1lls extraction)

Search speed (br. / s) : 8106.3
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DON'T FORGET TO TRY THE OBVIOUS
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DON'T FORGET TO TRY THE OBVIOUS

" It doesn't take long

— S0, even if it works poorly, you did not waste too much time

— Gives you a simple “trusted” implementation that you can test against
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DON'T FORGET TO TRY THE OBVIOUS

" It doesn't take long
— S0, even if it works poorly, you did not waste too much time

— Gives you a simple “trusted” implementation that you can test against
= It might work well. If the obvious approach has not worked for others:
— The reasons it did not work might not exist today

— For the PPP, CP Optimizer is using

* A global packing constraint
* A search process which uses restarts and learning

— Which were not available / used in original studies
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DON'T FORGET TO TRY THE OBVIOUS

" It doesn't take long
— S0, even if it works poorly, you did not waste too much time

— Gives you a simple “trusted” implementation that you can test against

= It might work well. If the obvious approach has not worked for others:
— The reasons it did not work might not exist today

— For the PPP, CP Optimizer is using

* A global packing constraint
* A search process which uses restarts and learning

— Which were not available / used in original studies

" In any case, if the obvious approach is a success
— DON'T TRUST YOURSELF — check your work!
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Magic Squares

/7 118 | 25 | 4 |11
S 8 |19 | 12 | 21
16 | 24 | 13 | 9 3
22 | 14 | 2 |17 | 10
15 | 1 6 | 23 | 20
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Magic Squares
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Magic Squares
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Magic Squares
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Diagonally Ordered Magic Squares

16 | 24 | 13 | 9 3

22 | 14 | 2 | 17 | 10

15 | 1 6 | 23 | 20
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Diagonally Ordered Magic Squares

16 | 24 | 13 | 9 3

22 | 14 | 2 |17 | 10

15 | 1 6 | 23 | 20
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Diagonally Ordered Magic Squares

= “Streamlined Constraint Reasoning”

— Gomes and Sellmann, CP 2004

— Uses restarts and “streamlining” (search space restriction)
= “Disco Novo Gogo”

— Sellmann and Ansotegui, AAAI 2006

— Uses restarts, randomized variable ordering and learning on the
value selection heuristic

* | wanted to see how CP Optimizer's search compared
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Diagonally Ordered Magic Squares
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18686888
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Streamlining: Dumbledore Squares

= Each row and column usually has an even spread of numbers

/7 118 | 25| 4 |11
5 8 | 19 | 12 | 21
16 | 24 | 13 | 9 3
22 | 14 | 2 | 17 | 10
15 | 1 6 | 23 | 20
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Streamlining: Dumbledore Squares

* Force each row and column to have a number from each “class

7 118 | 25 | 4 |11
5 | 8 | 19 | 12 | 21
16 | 24 |13 | 9 | 3
22 | 14| 2 | 17 | 10
15| 1 | 6 |23 |20

(A) 1-5 (B) 6-10

B| D |E C
A|B|D E
D |E |C A
E | C | A B
C | A|B D
(C) 11-15 (D) 16-20 (E) 21-25
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Streamlining: Dumbledore Squares

1600880 |

18888

1008 |

168 [

Tine (=)

1@ |

Etreamlining ——+——|-

16 18



| IBM Software Group | WebSphere software

Streamlining: Dumbledore Squares

1600880 | .

BB e L S S B e

AU VORI SVINUTUIN ORI - SOOI ... AT,

T SR A —— ITR———— AL TR TN F—

- =]

v ] ]
~ : : : ; : :
w : : : : :

£ - : : : : ]
P ; ; ; : :

1B i i . ' """"""""""" b e e e P e S b e P e e S S i __

i : : ' : : ; ]

e e S e o e R e e o e e R S e S e e s e B s R S R s R s 2 e A

2 T I e R e S ]

: CF Optimizer —»—
B.Bl | | | | |

Str‘elanl.i.n.i.ng e e

6 8 18 12 14 16

18



| IBM Software Group | WebSphere software

Streamlining: Dumbledore Squares

1868888 r T

10880 - R e e e s
1808 |

168 [

| 5 5 T 5 5 !
T EEVRVNPRUIN SA—— oot s s VRV, S — .

Tine (=)

Streanlining —— 1

CPF Optinmizer —— ||

Dizco Movo GoGo —#—
I

6 8 18 12 14 16 18




| IBM Software Group | WebSphere software

DO FAVOUR GRAPHS OVER TABLES
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DO FAVOUR GRAPHS OVER TABLES

= DO produce scaling results when you can

— These give excellent information about how different methods compare
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DO FAVOUR GRAPHS OVER TABLES

= DO produce scaling results when you can
— These give excellent information about how different methods compare
= DO use scatter plots

— When results cannot easily be aggregated
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DO FAVOUR GRAPHS OVER TABLES

= DO produce scaling results when you can

— These give excellent information about how different methods compare

= DO use scatter plots
— When results cannot easily be aggregated
= DO convert tables you find in the literature to graphs

— DON'T use tables just because previous papers did!
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Large neighborhood search

" Hybrid of local and constructive search which looks like local search
from a high level, but uses constructive search to make moves

— Each move removes part of the current solution

— Rebuilds it using a constructive method (usually limited in backtracks)
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Large neighborhood search

* Hybrid of local and constructive search which looks like local search
from a high level, but uses constructive search to make moves

— Each move removes part of the current solution

— Rebuilds it using a constructive method (usually limited in backtracks)

* | applied LNS to routing problems, and tested on the well-known
“Solomon” instances of capacitated vehicle routing problems with time
windows

— This benchmark suite of 56 problems has been used in hundreds of
papers on vehicle routing.

— My LNS method removed some customers from routes, then re-
inserted them using a backtracking technique and ordering heuristics
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Large neighborhood search
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Large neighborhood search
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Large neighborhood search
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Large neighborhood search
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Solomon problem instances (100 customers)

= Objective is to
— As a primary objective, minimize the number of vehicles used
— As a secondary objective, minimize the distance travelled

—0obj = M * vehicles + distance

5-10 customers 25-50 customers
per route per route

e Rt R2
Gwe Gl C2
s RCT RC2

© 2010 IBM Corporation




| IBM Software Group | WebSphere software

Typical situation on long-route problems (series 2)

" For the most part, LNS will reduce the distance and not the vehicles

— To reduce the number of vehicles, LNS must remove and successfully
reinsert all customers on a single vehicle

— When average customers on a route >=12, this gets difficult

Bad for reducing vehicles
O—0—>30>0>»0*0>0—>0>»0>0>0—0

O—O0—O>O>»O0 O >O0—)>0—>0—>0—0

O—»O—O0>0O>»0 " O>O0—O>0O0—>0—>0—0

Good for reducing vehicles
O—0—0>0+0+0>0—0+0>0>0+0>0—0—0

O—0—>0>0>»0*0>0—>0>0>0>0—>0>0—0—0

O0—0—0>0>»0*0>0—>0>0>0>0>0>0—0—0
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Solomon problem instances (100 customers)

= Objective is to
— As a primary objective, minimize the number of vehicles used
— As a secondary objective, minimize the distance travelled

—0obj = M * vehicles + distance

5-10 customers 25-50 customers
per route per route

e Rt R2
Gwe Gl C2
s RCT RC2
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Solomon problem instances (100 customers)

= Objective is to
— As a primary objective, minimize the number of vehicles used
— As a secondary objective, minimize the distance travelled

—0obj = M * vehicles + distance

5-10 customers 25-50 customers

per route per rout
Random
positions R 1
Clustered C 1

positions

Mixed
Positions RC 1
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DON'T be a slave to benchmark suites
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DON'T be a slave to benchmark suites

= DON'T feel that your algorithm has to be good everywhere

— But DO know how it performs in as many places as possible
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DON'T be a slave to benchmark suites

= DON'T feel that your algorithm has to be good everywhere

— But DO know how it performs in as many places as possible

= DO report your failures

© 2010 IBM Corporation




| IBM Software Group | WebSphere software

DON'T be a slave to benchmark suites

= DON'T feel that your algorithm has to be good everywhere

— But DO know how it performs in as many places as possible
= DO report your failures
* If you need to, DO create new benchmark instances,

— But DO be credible

© 2010 IBM Corporation
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Heuristics

* Variable and value ordering heuristics are ubiquitous
= Typical implementation of first fail:

best = -1;
bestSize = infinity;
for i in 1l..n
if (not fixed(x[i]) and domain-size(x[1i]) < bestSize)

best = 1
bestSize = domain-size(x[1])
end if
end for

© 2010 IBM Corporation
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Heuristics

* Variable and value ordering heuristics are ubiquitous
= Typical implementation of first fail:

best = -1;
bestSize = infinity;
for i in 1l..n
if (not fixed(x[i]) and domain-size(x[1i]) < bestSize)

best = 1
bestSize = domain-size(x[1])
end if
end for

— This code contains an implicit tie-breaking rule:
* Lower indexed variables are chosen over higher indexed ones
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Heuristics: Magic squares
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Heuristics: Magic squares
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DO think about tie breaking
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DO think about tie breaking

= DON'T tie break on arbitrary data, like an index
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DO think about tie breaking

= DON'T tie break on arbitrary data, like an index

= DON'T wrongly attribute performance to the major selection rule

— Test the minor selection rules as well

© 2010 IBM Corporation
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Summary
= DON'T trust yourself

— If it looks too good to be true, then it probably is

DON'T forget to try the obvious
— Your “obvious” might not be the same as others'

— The obvious might work now, when it didn't before

DO use graphs over tables

— Will make you ask much more interesting questions

DON'T be a slave to benchmark suites

— Be honest, report your failures

DO think about tie-breaking

— Can have a massive impact on benchmark results

© 2010 IBM Corporation
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